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ABSTRACTS 

In a wide range of DSP applications includes 

processing of sensor array processing, audio and 

speech signal processing, control of systems, radar 

and sonar signal processing, spectral estimation, 

digital image processing, seismic data processing, 

biomedical signal processing, statistical signal 

processing, signal processing for communications, 

Filter designing & many high accuracy based 

operations. Floating point operations are used due 

to its huge dynamic range, high accuracy and 

straightforward operation rules. With the current 

trends in system requirementsand available FPGAs, 

floating-point implementations arebecoming more 

common and designers are increasinglytaking 

advantage of FPGAs as a platform for floating-

pointimplementations. The rapid advance in Field-

ProgrammableGate Array (FPGA) technology 

makes such devicesincreasingly attractive for 

implementing floating-pointarithmetic. Compared 

to Application Specific IntegratedCircuits, FPGAs 

offer reduced development time and 

costs.Moreover, their flexibility enables field 

upgrade andadaptation of hardware to run-time 

conditions. This paper describes the process of 

building a general floating point arithmetic unit 

using Verilog HDLbased on FPGA. The floating 

point arithmetic unit can perform addition and 

subtraction operations of a couple of double 

precision floating point numbers or two couple 

of single precision floating point numbers. At the 

end of this paper, the features and calculation 

correctness are proved through simulation and 

hardware experiments. 

1. INTRODUCTION 

The implementation of the floating point arithmetic 

has been appropriate within the floating point high 

level languages; however the execution of the 

arithmetic by hardware is difficult task. With the 

expansion of the very large scale integration 

(VLSI) technology have become the most effective 

choices for implementing floating hardware 

arithmetic units due to their high integration 

density, high performance, low worth and versatile 

applications needs for prime precious operation. 

The IEEE 754 standard presents two completely 

different floating point formats, Binary interchange 

format and Decimal interchange format. This 

section focuses solely on single precision 

normalized binary interchange format. Figure 1 

shows the IEEE 754 single precision binary format 

representation, it consists of a one bit sign (S), an 

eight bit exponent (E), and a twenty three bit 

fraction (M) or Mantissa. 

In digital signal processing, image processing, 

voice communications, wireless communications 

and many other fields, a large number of data 

with different precision and high requirements of 

real-time need to be processed. Floating point 

arithmetic has the characteristics of high 

precision. But compared to integers arithmetic , 

floating- point arithmetic occupies more 

hardware resources so that it 

isimplementedbysoftwareinmanysystems.Asares

ult,the 

operationspeedofthisfloatingpointarithmeticisver

yslow. And although hardware floating-point 

arithmetic can increase the speed of computation, 

the floating-point arithmetic for multiple 

precision requires many floating- point units, 

which occupies a large amount of hardware 

resources. So if a floating-point unit which can 

achieve different precision processing is 

designed, hardware costs 

willbereduced.AndtherapiddevelopmentofFPGA

makes itpossible.Themulti-precisionfloating-

pointarithmeticunit, 

proposedinthispaper,canchangetheinternalconfig

uration of the circuit (when operating), according 

to the calculation precision, in order to achieve 

single or double precision calculation with 

minimum hardwareresources. 

Theimplementation of the floating point arithmetic 

hasbeen very easy and convenient in the floating 

point 

high level languages, but the implementation of 

thearithmetic by hardware has been very difficult. 

Withthe development of the very large scale 

integration(VLSI) technology, a kind of devices 

like FieldProgrammable Gate Arrays (FPGAs) 

have becomethe best options for implementing 

floating hardwarearithmetic units because of their 

high integrationdensity, low price, high 

performance and flexibleapplications requirements 

for high precious operation.Floating-point 

implementation on FPGAs has beenthe interest of 

many researchers. The use of customfloating-point 

formats in FPGAs has beeninvestigated in a long 

series of work [3], [4], [8]. Inmost of the cases, 

these formats are shown to beadequate for some 

applications that requiresignificantly less area to 

implement than IEEEformats [6] significant 
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speedups for certain chosenapplications. The 

earliest work on IEEE floating-point[7] focused on 

single precision although found to befeasible but it 

was extremely slow. Eventually, it 

wasdemonstrated [8] that while FPGAs 

wereuncompetitive with CPUs in terms of peak 

FLOPs,they could provide competitive sustained 

floatingpointperformance. Since then, a variety of 

work [2],[5],[9]-[10] has demonstrated the growing 

feasibilityof IEEE compliant, single precision 

floating pointarithmetic and other floating-point 

formats ofapproximately same complexity. In [2], 

[5], thedetails of the floating-point format are 

varied tooptimize performance. The specific issues 

ofimplementing floating-point division in FPGAs 

havebeen studied [10].  

Early implementations eitherinvolved multiple 

FPGAs for implementing IEEE 754single precision 

floating-point arithmetic, or theyadopted custom 

data formats to enable a single-FPGAsolution. To 

overcome device size restriction,subsequent single-

FPGA implementations of IEEE754 standard 

employed serial arithmetic or avoidedfeatures, such 

as supporting gradual underflow, whichare 

expensive to implement. 

In this paper, a high-speed IEEE754-compliant 32-

bit floating point arithmetic unit designed 

usingVHDL code has been presented and all 

operations ofaddition, subtraction, multiplication 

and division gottested on Xilinx and verified 

successfully along withthat all the exceptions of 

floating point numbers arestudied in detail. The 

simulation results of addition,subtraction, 

multiplication and division in Modelsimwave 

window. 

2. LITERATURE REVIEW 

In 2010, Kuang proposed a power-efficient 16x16 

multiple precision multiplier. Using the slightly 

different divide-and-conquer technique similar to, 

four small 8x8 modified Booth multipliers are 

employed for the generation of partial products for 

the higher and lower portions of the computation. 

The resulting partial products are reorganized and 

fed to a large reduction tree followed by a fast 

adder for the generation of the final results. The 

basic idea is illustrated where CV is the correction 

vector required for Booth multiplication. They also 

investigated the potential of saving power when 

single lower precision operation or operations with 

truncation were required. A dynamic range detector 

with supplement shutdown circuit was presented to 

handle such power-saving scenarios. 

       In 2008, Akkas presented a technique capable 

of modifying an IEEE adder architecture to a new 

dual-mode one that allows one operation of native 

precision or two parallel additions on half of the 

native precision (e.g., one double or two single). 

The author showed the detail designs for a 5-stage 

pipelined dual-mode double precision adder with 

improved single-path algorithm, and a 3-stage dual-

mode quadruple precision adder with the two-path 

algorithm. Both designs support only normalized 

numbers. The implementation (0.11 um CMOS) 

area and latency overhead of the dual-mode double 

precision adder is around 26% and 10%, while 

those for the dual-mode quadruple adder is 13% 

and 18%. 

      Even et al. proposed a dual precision IEEE 

floating-point multiplier that can compute one 

single-precision result in 2 clock cycles or one 

double-precision product in 3 cycles, supporting all 

IEEE-compliant rounding modes. The half-size 

multiplication array (e.g., 27×53) is used in the first 

clock cycle for single precision, or the first two 

cycles for double precision, with the following 

cycle allocated for the final addition and 

rounding/normalization. Therefore, there will be 

one stall cycle after a double precision operation. 

Floating-point representation provides better 

dynamic range support, thus is more useful for 

scientific computations. In 2008, Akkas presented a 

technique capable of modifying an IEEE adder 

architecture to a new dual-mode one that allows 

one operation of native precision or two parallel 

additions on half of the native precision (e.g., one 

double or two single). The author showed the detail 

designs for a 5-stage pipelined dual-mode double 

precision adder with improved single-path 

algorithm, and a 3-stage dual-mode quadruple 

precision adder with the two-path algorithm. Both 

designs support only normalized numbers. The 

implementation (0.11 um CMOS) area and latency 

overhead of the dual-mode double precision adder 

is around 26% and 10%, while those for the dual-

mode quadruple adder is 13% and 18%. 

This paper describes the architecture and 

implementation, from both the standpoint of target 

applications as well as circuit design, of an FPGA 

DSP Block that can efficiently support both fixed 

and floating-point (FP) arithmetic. Most 

contemporary FPGAs embed DSP blocks that 

provide simple multiply-add-based fixed-point 

arithmetic cores. Current floating-point arithmetic 

FPGA solutions make use of these hardened DSP 

resources, together with embedded memory blocks 

and soft logic resources, however, larger systems 

cannot be efficiently implemented due to the 

routing and soft logic limitations on the devices, 

resulting in significant area, performance, and 

power consumption penalties compared to ASIC 

implementations. In this paper we analyze earlier 

proposed embedded floating-point 

implementations, and show why they are not 

suitable for a production FPGA. We contrast these 

against our solution – a unified DSP Block – where 

(a) the FP multiplier is overlaid on the fixed point 

constructs, (b) the FP Adder/Subtracter is 

integrated as a separate unit; and (c) the multiplier 

and adder can be combined in a way that is both 

arithmetically useful, but also efficient in terms of 
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FPGA routing density and congestion. In addition, 

a novel way of seamlessly combining any number 

of DSP Blocks in a low latency structure will be 

introduced. We will show that this new approach 

allows a low cost, low power, and high density 

floating point platform on current 20nm FPGAs. 

3. A VARIABLE PRECISION FIXED- 

AND FLOATINGPOINT LIBRARY 

FOR RECONFIGURABLE 

HARDWARE 

In variable precision floating-point library (VFloat) 

that supports general floating-point formats as well 

as IEEE standard formats. optimum reconfigurable 

hardware implementations could need the 

utilization of arbitrary floating-point formats that 

don't essentially adjust to IEEE standard sizes. 

Most antecedently printed floating-point formats to 

be used with reconfigurable hardware square 

measure subsets of our format. Custom data paths 

with optimum bit widths for every operation may 

be designed mistreatment the variable exactitude 

hardware modules within the VFloat library, 

enabling a better level of similarity. The VFloat 

library includes three varieties of hardware 

modules for format management, arithmetic 

operations, and conversions between fixed-point 

and floating-point formats. The format conversions 

gives hybrid fixed- and floating-point operations 

during a single style [1]. 

ALGORITHMS FOR FLOATING POINT 

ARITHMETIC UNIT 

The algorithms using flow charts for floating point 

addition/subtraction, multiplication and division 

have been described in this section, that become the 

base for writing VHDL codes for implementation 

of 32-bit floating point arithmetic unit. 

3.1 Floating Point Addition / Subtraction 

The algorithm for floating point addition is 

explained. While adding the two floating point 

numbers, two cases may arise. Case I: when both 

the numbers are of same sign i.e. when both the 

numbers are either +ve or –ve. In this case MSB of 

both the numbers are either 1 or 0. Case II: when 

both the numbers are of different sign i.e. when one 

number is +ve and other number is –ve. In this case 

the MSB of one number is 1 and other is 0. 

Case I: - When both numbers are of same sign 

Step 1:- Enter two numbers N1 and N2. E1, S1 and 

E1, S2 represent exponent and significant of N1 

and N2 respectively. 

Step 2:- Is E1 or E2 =“0”. If yes; set hidden bit of 

N1 or N2 is zero. If not; then check if E2 > E1, if 

yes swap N1 and N2 and if E1 > E2; contents of N1 

and N2 need not to be swapped. 

Step 3:- Calculate difference in exponents d=E1-

E2. If d= “0” then there is no need of shifting the 

significant. 

If d is more than “0” say “y” then shift S2 to the 

right by an amount “y and fill the left most bits by 

zero.  

Shifting is done with hidden bit. 

Step 4:- Amount of shifting i.e. “y” is added to 

exponent of N2 value. New exponent value of 

E2=(previous E2) + “y”. Now result is in normalize 

form because E1 = E2. 

Step 5:- Check if N1 and N2 have different sign, if 

“no”; 

Step 6:- Add the significant of 24 bits each 

including hidden bit S=S1+S2. 

Step 7:- Check if there is carry out in significant 

addition. If yes; then add “1” to the exponent value 

of either E1 or new E2. After addition, shift the 

overall result of significant addition to the right by 

one by making MSB of S as “1” and dropping LSB 

of significant. 

Step 8:- If there is no carry out in step 6, then 

previous exponent is the real exponent. 

Step 9:- Sign of the result i.e. MSB = MSB of 

either N1 or N2. 

Step 10:- Assemble result into 32 bit format 

excluding 24th bit of significant i.e. hidden bit. 

Case II: - When both numbers are of different 

sign 

Step 1, 2, 3 & 4 are same as done in case I. 

Step 5:- Check if N1 and N2 have different sign, if 

“Yes”; 

Step 6:- Take 2‟s complement of S2 and then add it 

to S1 i.e. S=S1+ (2‟s complement of S2). 

Step 7:- Check if there is carry out in significant 

addition. If yes; then discard the carry and also shift 

the result to left until there is “1” in MSB and also 

count the amount of shifting say “z”. 

Step 8:- Subtract “z” from exponent value either 

from E1 or E2. Now the original exponent is E1-

“z”. Also append the “z” amount of zeros at LSB. 

Step 9:- If there is no carry out in step 6 then MSB 

must be “1” and in this case simply replace “S” by 

2‟s complement. 

Step 10:- Sign of the result i.e. MSB = Sign of the 

larger number either MSB of N1or it can be MSB 

of N2. 

Step 11:- Assemble result into 32 bit format 

excluding 24th bit of significant i.e. hidden bit. 

In this algorithm three 8-bit comparators, one 24- 

bit and two 8-bit adders, two 8-bit subtractors, two 

shift units and one swap unit are required inthe 

design. 

3.2 Floating Point Multiplication 

The algorithm for floating point multiplication 

isexplained through flow chart in Figure 3. Let N1 

andN2 are normalized operands represented by S1, 

M1,E1 and S2, M2, E2 as their respective sign 

bit,mantissa (significant) and exponent. 

Basicallyfollowing four steps are used for floating 

pointmultiplication. 

1. Multiply significant, add exponents, and 

determinesignM=M1*M2E=E1+E2-

BiasS=S1XORS2 

2. Normalize Mantissa M (Shift left or right by 1) 

andupdate exponent E 
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3. Rounding the result to fit in the available bits 

4. Determine exception flags and special values 

foroverflow and underflow. 

Sign Bit Calculation: The result of multiplicationis 

a negative sign if one of the multiplied numbersis 

of a negative value and that can be obtained 

byXORing the sign of two inputs. 

Exponent Addition is done through unsigned 

adderfor adding the exponent of the first input to 

theexponent of the second input and after that 

subtractthe Bias from the addition result (i.e. 

E1+E2- Bias). The result of this stage can be called 

asintermediate exponent. Significant 

Multiplicationis done for multiplying the unsigned 

significant and placing the decimal point in the 

multiplicationproduct. The result of significant 

multiplicationcan be called as intermediate product 

(IP). Theunsigned significant multiplication is done 

on 24bit. The result of the significant 

multiplication(intermediate product) must be 

normalized to havea leading “1” just to the left of 

the decimal point(i.e. in the bit 46 in the 

intermediate product).Since the inputs are 

normalized numbers then theintermediate product 

has the leading one at bit 46or 47. If the leading 

one is at bit 46 (i.e. to the leftof the decimal point) 

then the intermediate productis already a 

normalized number and no shift isneeded. If the 

leading one is at bit 47 then theintermediate 

product is shifted to the right and theexponent is 

incremented by 1. 

 
Fig. 1:Simulation result of decimal inputs 2.5& 

4.75 for adder in modelsim wave window 

3.3 Floating Point Division 

The algorithm for floating point multiplication 

isexplained through flow chart in Figure 1. Let N1 

andN2 are normalized operands represented by S1, 

M1,E1 and S2, M2, E2 as their respective sign 

bit,mantissa (significant) and exponent. If let us say 

weconsider x=N1 and d=N2 and the final result q 

hasbeen taken as “x/d”. Again the following four 

stepsare used for floating point division. 

1. Divide significant, subtract exponents, 

anddetermine sign M=M1/M2 E=E1-E2 

S=S1XORS2 

2. Normalize Mantissa M (Shift left or right by 1) 

andupdate exponent E 

3. Rounding the result to fit in the available bits 

4. Determine exception flags and special valuesThe 

sign bit calculation, mantissa division, 

exponentsubtraction (no need of bias subtraction 

here),rounding the result to fit in the available bits 

andnormalization is done in the similar way as has 

beendescribed for multiplication. 

4. FLOATING-POINT UNIT IN THE 

SYNERGISTIC PROCESSOR  

The floating-point unit (FPU) within the synergistic 

processor part (SPE) of a CELL processor may be a 

absolutely pipelined 4-way single-instruction 

multiple-data (SIMD) unit designed to accelerate 

media and information streaming with 128-bit 

operands. It supports 32-bit single-precision 

floating-point and 16-bit number operands with 2 

completely different latencies, six-cycle and seven-

cycle, with eleven FO4 delay per stage. The FPU 

optimizes the performance of vital single-precision 

multiply-add operations. Since precise rounding 

error, exceptions, and de-norm range handling don't 

seem to be vital to multimedia system applications, 

IEEE correctness on the single-precision floating-

point numbers is sacrificed for performance and 

easy style. It employs fine-grained clock gating for 

power saving. the planning has 768K transistors in 

one.3 mm2, made-up SOI in 90-nm technology. 

Correct operations are ascertained up to five.6 GHz 

with one.4 V and 56°C, delivering forty four.8 

GFlops. design, logic, circuits, and integration 

square measure co-designed to satisfy the 

performance, power, and space goals. 

CONCLUSION Improvement in Floating-point 

operations by minimizing the time consumed for 

FPU operations, power consumed in floating point 

operations and space utilization which will enhance 

the working of digital signal processing & other 

many operations. Existing floating point operations 

have limitations that it can implement on only one 

type of hardware either 32 bits, 64 bits & 128 bits. 

The VHDL code written for complete 32-bit 

floatingpoint arithmetic unit has been implemented 

and testedon Xilinx. The designed arithmetic unit 

operates on32-bit operands. It can be designed for 

64- bitoperands to enhance precision. It can be 

extended tohave more mathematical operations like 

trigonometric,logarithmic and exponential function. 
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