
ANALYSIS OF FPGA BASED 32-BIT FLOATING POINT

ARITHMETIC UNIT

1
D KIRTANA ,

2
 P KIRANMAYEE,

3
V VIJAYA KUMAR

1,2,3
Assistant professor, ECE Department, St.Martin’s Engineering College,Sec

ABSTRACTS

In a wide range of DSP applications includes

processing of sensor array processing, audio and

speech signal processing, control of systems, radar

and sonar signal processing, spectral estimation,

digital image processing, seismic data processing,

biomedical signal processing, statistical signal

processing, signal processing for communications,

Filter designing & many high accuracy based

operations. Floating point operations are used due

to its huge dynamic range, high accuracy and

straightforward operation rules. With the current

trends in system requirementsand available FPGAs,

floating-point implementations arebecoming more

common and designers are increasinglytaking

advantage of FPGAs as a platform for floating-

pointimplementations. The rapid advance in Field-

ProgrammableGate Array (FPGA) technology

makes such devicesincreasingly attractive for

implementing floating-pointarithmetic. Compared

to Application Specific IntegratedCircuits, FPGAs

offer reduced development time and

costs.Moreover, their flexibility enables field

upgrade andadaptation of hardware to run-time

conditions. This paper describes the process of

building a general floating point arithmetic unit

using Verilog HDLbased on FPGA. The floating

point arithmetic unit can perform addition and

subtraction operations of a couple of double

precision floating point numbers or two couple

of single precision floating point numbers. At the

end of this paper, the features and calculation

correctness are proved through simulation and

hardware experiments.

1. INTRODUCTION

The implementation of the floating point arithmetic

has been appropriate within the floating point high

level languages; however the execution of the

arithmetic by hardware is difficult task. With the

expansion of the very large scale integration

(VLSI) technology have become the most effective

choices for implementing floating hardware

arithmetic units due to their high integration

density, high performance, low worth and versatile

applications needs for prime precious operation.

The IEEE 754 standard presents two completely

different floating point formats, Binary interchange

format and Decimal interchange format. This

section focuses solely on single precision

normalized binary interchange format. Figure 1

shows the IEEE 754 single precision binary format

representation, it consists of a one bit sign (S), an

eight bit exponent (E), and a twenty three bit

fraction (M) or Mantissa.

In digital signal processing, image processing,

voice communications, wireless communications

and many other fields, a large number of data

with different precision and high requirements of

real-time need to be processed. Floating point

arithmetic has the characteristics of high

precision. But compared to integers arithmetic ,

floating- point arithmetic occupies more

hardware resources so that it

isimplementedbysoftwareinmanysystems.Asares

ult,the

operationspeedofthisfloatingpointarithmeticisver

yslow. And although hardware floating-point

arithmetic can increase the speed of computation,

the floating-point arithmetic for multiple

precision requires many floating- point units,

which occupies a large amount of hardware

resources. So if a floating-point unit which can

achieve different precision processing is

designed, hardware costs

willbereduced.AndtherapiddevelopmentofFPGA

makes itpossible.Themulti-precisionfloating-

pointarithmeticunit,

proposedinthispaper,canchangetheinternalconfig

uration of the circuit (when operating), according

to the calculation precision, in order to achieve

single or double precision calculation with

minimum hardwareresources.

Theimplementation of the floating point arithmetic

hasbeen very easy and convenient in the floating

point

high level languages, but the implementation of

thearithmetic by hardware has been very difficult.

Withthe development of the very large scale

integration(VLSI) technology, a kind of devices

like FieldProgrammable Gate Arrays (FPGAs)

have becomethe best options for implementing

floating hardwarearithmetic units because of their

high integrationdensity, low price, high

performance and flexibleapplications requirements

for high precious operation.Floating-point

implementation on FPGAs has beenthe interest of

many researchers. The use of customfloating-point

formats in FPGAs has beeninvestigated in a long

series of work [3], [4], [8]. Inmost of the cases,

these formats are shown to beadequate for some

applications that requiresignificantly less area to

implement than IEEEformats [6] significant

Alochana Chakra Journal

Volume IX, Issue IV, April/2020

ISSN NO:2231-3990

Page No:3184

speedups for certain chosenapplications. The

earliest work on IEEE floating-point[7] focused on

single precision although found to befeasible but it

was extremely slow. Eventually, it

wasdemonstrated [8] that while FPGAs

wereuncompetitive with CPUs in terms of peak

FLOPs,they could provide competitive sustained

floatingpointperformance. Since then, a variety of

work [2],[5],[9]-[10] has demonstrated the growing

feasibilityof IEEE compliant, single precision

floating pointarithmetic and other floating-point

formats ofapproximately same complexity. In [2],

[5], thedetails of the floating-point format are

varied tooptimize performance. The specific issues

ofimplementing floating-point division in FPGAs

havebeen studied [10].

Early implementations eitherinvolved multiple

FPGAs for implementing IEEE 754single precision

floating-point arithmetic, or theyadopted custom

data formats to enable a single-FPGAsolution. To

overcome device size restriction,subsequent single-

FPGA implementations of IEEE754 standard

employed serial arithmetic or avoidedfeatures, such

as supporting gradual underflow, whichare

expensive to implement.

In this paper, a high-speed IEEE754-compliant 32-

bit floating point arithmetic unit designed

usingVHDL code has been presented and all

operations ofaddition, subtraction, multiplication

and division gottested on Xilinx and verified

successfully along withthat all the exceptions of

floating point numbers arestudied in detail. The

simulation results of addition,subtraction,

multiplication and division in Modelsimwave

window.

2. LITERATURE REVIEW

In 2010, Kuang proposed a power-efficient 16x16

multiple precision multiplier. Using the slightly

different divide-and-conquer technique similar to,

four small 8x8 modified Booth multipliers are

employed for the generation of partial products for

the higher and lower portions of the computation.

The resulting partial products are reorganized and

fed to a large reduction tree followed by a fast

adder for the generation of the final results. The

basic idea is illustrated where CV is the correction

vector required for Booth multiplication. They also

investigated the potential of saving power when

single lower precision operation or operations with

truncation were required. A dynamic range detector

with supplement shutdown circuit was presented to

handle such power-saving scenarios.

 In 2008, Akkas presented a technique capable

of modifying an IEEE adder architecture to a new

dual-mode one that allows one operation of native

precision or two parallel additions on half of the

native precision (e.g., one double or two single).

The author showed the detail designs for a 5-stage

pipelined dual-mode double precision adder with

improved single-path algorithm, and a 3-stage dual-

mode quadruple precision adder with the two-path

algorithm. Both designs support only normalized

numbers. The implementation (0.11 um CMOS)

area and latency overhead of the dual-mode double

precision adder is around 26% and 10%, while

those for the dual-mode quadruple adder is 13%

and 18%.

 Even et al. proposed a dual precision IEEE

floating-point multiplier that can compute one

single-precision result in 2 clock cycles or one

double-precision product in 3 cycles, supporting all

IEEE-compliant rounding modes. The half-size

multiplication array (e.g., 27×53) is used in the first

clock cycle for single precision, or the first two

cycles for double precision, with the following

cycle allocated for the final addition and

rounding/normalization. Therefore, there will be

one stall cycle after a double precision operation.

Floating-point representation provides better

dynamic range support, thus is more useful for

scientific computations. In 2008, Akkas presented a

technique capable of modifying an IEEE adder

architecture to a new dual-mode one that allows

one operation of native precision or two parallel

additions on half of the native precision (e.g., one

double or two single). The author showed the detail

designs for a 5-stage pipelined dual-mode double

precision adder with improved single-path

algorithm, and a 3-stage dual-mode quadruple

precision adder with the two-path algorithm. Both

designs support only normalized numbers. The

implementation (0.11 um CMOS) area and latency

overhead of the dual-mode double precision adder

is around 26% and 10%, while those for the dual-

mode quadruple adder is 13% and 18%.

This paper describes the architecture and

implementation, from both the standpoint of target

applications as well as circuit design, of an FPGA

DSP Block that can efficiently support both fixed

and floating-point (FP) arithmetic. Most

contemporary FPGAs embed DSP blocks that

provide simple multiply-add-based fixed-point

arithmetic cores. Current floating-point arithmetic

FPGA solutions make use of these hardened DSP

resources, together with embedded memory blocks

and soft logic resources, however, larger systems

cannot be efficiently implemented due to the

routing and soft logic limitations on the devices,

resulting in significant area, performance, and

power consumption penalties compared to ASIC

implementations. In this paper we analyze earlier

proposed embedded floating-point

implementations, and show why they are not

suitable for a production FPGA. We contrast these

against our solution – a unified DSP Block – where

(a) the FP multiplier is overlaid on the fixed point

constructs, (b) the FP Adder/Subtracter is

integrated as a separate unit; and (c) the multiplier

and adder can be combined in a way that is both

arithmetically useful, but also efficient in terms of

Alochana Chakra Journal

Volume IX, Issue IV, April/2020

ISSN NO:2231-3990

Page No:3185

FPGA routing density and congestion. In addition,

a novel way of seamlessly combining any number

of DSP Blocks in a low latency structure will be

introduced. We will show that this new approach

allows a low cost, low power, and high density

floating point platform on current 20nm FPGAs.

3. A VARIABLE PRECISION FIXED-

AND FLOATINGPOINT LIBRARY

FOR RECONFIGURABLE

HARDWARE

In variable precision floating-point library (VFloat)

that supports general floating-point formats as well

as IEEE standard formats. optimum reconfigurable

hardware implementations could need the

utilization of arbitrary floating-point formats that

don't essentially adjust to IEEE standard sizes.

Most antecedently printed floating-point formats to

be used with reconfigurable hardware square

measure subsets of our format. Custom data paths

with optimum bit widths for every operation may

be designed mistreatment the variable exactitude

hardware modules within the VFloat library,

enabling a better level of similarity. The VFloat

library includes three varieties of hardware

modules for format management, arithmetic

operations, and conversions between fixed-point

and floating-point formats. The format conversions

gives hybrid fixed- and floating-point operations

during a single style [1].

ALGORITHMS FOR FLOATING POINT

ARITHMETIC UNIT

The algorithms using flow charts for floating point

addition/subtraction, multiplication and division

have been described in this section, that become the

base for writing VHDL codes for implementation

of 32-bit floating point arithmetic unit.

3.1 Floating Point Addition / Subtraction

The algorithm for floating point addition is

explained. While adding the two floating point

numbers, two cases may arise. Case I: when both

the numbers are of same sign i.e. when both the

numbers are either +ve or –ve. In this case MSB of

both the numbers are either 1 or 0. Case II: when

both the numbers are of different sign i.e. when one

number is +ve and other number is –ve. In this case

the MSB of one number is 1 and other is 0.

Case I: - When both numbers are of same sign

Step 1:- Enter two numbers N1 and N2. E1, S1 and

E1, S2 represent exponent and significant of N1

and N2 respectively.

Step 2:- Is E1 or E2 =“0”. If yes; set hidden bit of

N1 or N2 is zero. If not; then check if E2 > E1, if

yes swap N1 and N2 and if E1 > E2; contents of N1

and N2 need not to be swapped.

Step 3:- Calculate difference in exponents d=E1-

E2. If d= “0” then there is no need of shifting the

significant.

If d is more than “0” say “y” then shift S2 to the

right by an amount “y and fill the left most bits by

zero.

Shifting is done with hidden bit.

Step 4:- Amount of shifting i.e. “y” is added to

exponent of N2 value. New exponent value of

E2=(previous E2) + “y”. Now result is in normalize

form because E1 = E2.

Step 5:- Check if N1 and N2 have different sign, if

“no”;

Step 6:- Add the significant of 24 bits each

including hidden bit S=S1+S2.

Step 7:- Check if there is carry out in significant

addition. If yes; then add “1” to the exponent value

of either E1 or new E2. After addition, shift the

overall result of significant addition to the right by

one by making MSB of S as “1” and dropping LSB

of significant.

Step 8:- If there is no carry out in step 6, then

previous exponent is the real exponent.

Step 9:- Sign of the result i.e. MSB = MSB of

either N1 or N2.

Step 10:- Assemble result into 32 bit format

excluding 24th bit of significant i.e. hidden bit.

Case II: - When both numbers are of different

sign

Step 1, 2, 3 & 4 are same as done in case I.

Step 5:- Check if N1 and N2 have different sign, if

“Yes”;

Step 6:- Take 2‟s complement of S2 and then add it

to S1 i.e. S=S1+ (2‟s complement of S2).

Step 7:- Check if there is carry out in significant

addition. If yes; then discard the carry and also shift

the result to left until there is “1” in MSB and also

count the amount of shifting say “z”.

Step 8:- Subtract “z” from exponent value either

from E1 or E2. Now the original exponent is E1-

“z”. Also append the “z” amount of zeros at LSB.

Step 9:- If there is no carry out in step 6 then MSB

must be “1” and in this case simply replace “S” by

2‟s complement.

Step 10:- Sign of the result i.e. MSB = Sign of the

larger number either MSB of N1or it can be MSB

of N2.

Step 11:- Assemble result into 32 bit format

excluding 24th bit of significant i.e. hidden bit.

In this algorithm three 8-bit comparators, one 24-

bit and two 8-bit adders, two 8-bit subtractors, two

shift units and one swap unit are required inthe

design.

3.2 Floating Point Multiplication

The algorithm for floating point multiplication

isexplained through flow chart in Figure 3. Let N1

andN2 are normalized operands represented by S1,

M1,E1 and S2, M2, E2 as their respective sign

bit,mantissa (significant) and exponent.

Basicallyfollowing four steps are used for floating

pointmultiplication.

1. Multiply significant, add exponents, and

determinesignM=M1*M2E=E1+E2-

BiasS=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1)

andupdate exponent E

Alochana Chakra Journal

Volume IX, Issue IV, April/2020

ISSN NO:2231-3990

Page No:3186

3. Rounding the result to fit in the available bits

4. Determine exception flags and special values

foroverflow and underflow.

Sign Bit Calculation: The result of multiplicationis

a negative sign if one of the multiplied numbersis

of a negative value and that can be obtained

byXORing the sign of two inputs.

Exponent Addition is done through unsigned

adderfor adding the exponent of the first input to

theexponent of the second input and after that

subtractthe Bias from the addition result (i.e.

E1+E2- Bias). The result of this stage can be called

asintermediate exponent. Significant

Multiplicationis done for multiplying the unsigned

significant and placing the decimal point in the

multiplicationproduct. The result of significant

multiplicationcan be called as intermediate product

(IP). Theunsigned significant multiplication is done

on 24bit. The result of the significant

multiplication(intermediate product) must be

normalized to havea leading “1” just to the left of

the decimal point(i.e. in the bit 46 in the

intermediate product).Since the inputs are

normalized numbers then theintermediate product

has the leading one at bit 46or 47. If the leading

one is at bit 46 (i.e. to the leftof the decimal point)

then the intermediate productis already a

normalized number and no shift isneeded. If the

leading one is at bit 47 then theintermediate

product is shifted to the right and theexponent is

incremented by 1.

Fig. 1:Simulation result of decimal inputs 2.5&

4.75 for adder in modelsim wave window

3.3 Floating Point Division

The algorithm for floating point multiplication

isexplained through flow chart in Figure 1. Let N1

andN2 are normalized operands represented by S1,

M1,E1 and S2, M2, E2 as their respective sign

bit,mantissa (significant) and exponent. If let us say

weconsider x=N1 and d=N2 and the final result q

hasbeen taken as “x/d”. Again the following four

stepsare used for floating point division.

1. Divide significant, subtract exponents,

anddetermine sign M=M1/M2 E=E1-E2

S=S1XORS2

2. Normalize Mantissa M (Shift left or right by 1)

andupdate exponent E

3. Rounding the result to fit in the available bits

4. Determine exception flags and special valuesThe

sign bit calculation, mantissa division,

exponentsubtraction (no need of bias subtraction

here),rounding the result to fit in the available bits

andnormalization is done in the similar way as has

beendescribed for multiplication.

4. FLOATING-POINT UNIT IN THE

SYNERGISTIC PROCESSOR

The floating-point unit (FPU) within the synergistic

processor part (SPE) of a CELL processor may be a

absolutely pipelined 4-way single-instruction

multiple-data (SIMD) unit designed to accelerate

media and information streaming with 128-bit

operands. It supports 32-bit single-precision

floating-point and 16-bit number operands with 2

completely different latencies, six-cycle and seven-

cycle, with eleven FO4 delay per stage. The FPU

optimizes the performance of vital single-precision

multiply-add operations. Since precise rounding

error, exceptions, and de-norm range handling don't

seem to be vital to multimedia system applications,

IEEE correctness on the single-precision floating-

point numbers is sacrificed for performance and

easy style. It employs fine-grained clock gating for

power saving. the planning has 768K transistors in

one.3 mm2, made-up SOI in 90-nm technology.

Correct operations are ascertained up to five.6 GHz

with one.4 V and 56°C, delivering forty four.8

GFlops. design, logic, circuits, and integration

square measure co-designed to satisfy the

performance, power, and space goals.

CONCLUSION Improvement in Floating-point

operations by minimizing the time consumed for

FPU operations, power consumed in floating point

operations and space utilization which will enhance

the working of digital signal processing & other

many operations. Existing floating point operations

have limitations that it can implement on only one

type of hardware either 32 bits, 64 bits & 128 bits.

The VHDL code written for complete 32-bit

floatingpoint arithmetic unit has been implemented

and testedon Xilinx. The designed arithmetic unit

operates on32-bit operands. It can be designed for

64- bitoperands to enhance precision. It can be

extended tohave more mathematical operations like

trigonometric,logarithmic and exponential function.

REFERENCES

[1] X. Wang and M. Leeser, “Vfloat: A variable

precision fixed- and floating point library for

reconfigurable hardware,” ACM Trans.

Reconfigurable Technol. Syst., vol. 3, no. 3, pp.

16:1–16:34, Sep. 2010.

[2] K. S. Hemmert and K. D. Underwood, “Fast,

efficient floating-point adders and multipliers for

Alochana Chakra Journal

Volume IX, Issue IV, April/2020

ISSN NO:2231-3990

Page No:3187

FPGAs,” ACM Trans. Reconfigurable

Technol.Syst., vol. 3, no. 3, pp. 11:1– 11:30, Sep.

2010.

 [3] A. Baluni, F. Merchant, S. K. Nandy, and S.

Balakrishnan, “A fully pipelined modular multiple

precision floating point multiplier with vector

support,” in Proc. ISED, 2011, pp. 45–50.

[4] K.Manolopoulos, D. Reisis, and V. Chouliaras,

“An efficient multiple precision floating-point

multiplier,” in Proc. 18th IEEE Int. Conf.

Electron.,Circuits Syst., 2011, pp. 153–156.

[5] A. Isseven and A. Akkas, “A dual-mode

quadruple precision floatingpoint divider,” in Proc.

40th ACSSC, 2006, pp. 1697–1701.

[6] A. R. Lopes, A. Shahzad, G. A. Constantinides,

and E. C. Kerrigan, "More flops or more precision

Accuracy parameterizable linear equation solvers

for model predictive control," in IEEE Symposium

on Field Programmable Custom Computing

Machines, Napa, California, 2009.

[7] J. Maciejowski, “Predictive Control with

Constraints,”Prentice Hall, Pearson Education

Limited, Harlow, UK, 2001.

[8] R. Strzodka and D. G¨oddeke, “Pipelined mixed

precision algorithms on FPGAs for fast and

accurate PDEsolvers from low precision

components,” in IEEE Symposiumon Field-

Programmable Custom ComputingMachines

(FCCM 2006), Apr. 2006, pp. 259–268.

[9] A. Buttari, J. Dongarra, J. Kurzak, P. Luszczek,

and S. Tomov, “Using mixed precision for sparse

matrix computations to enhance the performance

while achieving 64-bit accuracy,” ACM Trans.

Math.Softw.,vol. 34, no. 4, pp. 1–22, 2008.

 [10] J. Sun, G. Peterson, and O. Storaasli, “High

performance mixed-precision linear solver for

fpgas,”IEEE Trans. on Computers, vol. 57, no. 12,

pp. 1614–1623, 2008.

Alochana Chakra Journal

Volume IX, Issue IV, April/2020

ISSN NO:2231-3990

Page No:3188

